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We report on high-mobility top-gate organic field-effect transistors (OFETs) and comple-
mentary-like inverters fabricated with a solution-processed molecular bis(naphthalene dii-
mide)-dithienopyrrole derivative as the channel semiconductor and a CYTOP/Al2O3 bilayer
as the gate dielectric. The OFETs showed ambipolar behavior with average electron and
hole mobility values of 1.2 and 0.01 cm2 V�1 s�1, respectively. Complementary-like invert-
ers fabricated with two ambipolar OFETs showed hysteresis-free voltage transfer charac-
teristics with negligible variations of switching threshold voltages and yielded very high
DC gain values of more than 90 V/V (up to 122 V/V) at a supply voltage of 25 V.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Organic field-effect transistors (OFETs) are receiving sig-
nificant attention because of their potential use in low-cost
flexible electronic applications such as smart pixels [1],
radio-frequency identification tags [2], drivers for elec-
tronic paper [3], and driving circuits for flat-panel displays
[4]. One approach for enabling these applications is to make
use of organic complementary-like logic circuits based on
p- and n-channel organic transistors fabricated by vacuum
evaporation [5,6]. However, to take advantage of large-area
and low-cost processing, solution-processed OFETs are pre-
ferred. p-Channel OFETs cast from solution have been re-
ported with saturation mobility values of 2.4 cm2 V�1 s�1

by Hamilton et al. [7] and 2.82 cm2 V�1 s�1 by Hwang
et al. [8]. Recently, p-channel OFETs incorporating a highly
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crystalline semiconductor with average carrier mobility
values of 16.4 cm2 V�1 s�1 have been demonstrated with
inkjet printing [9]. Solution-processed n-channel OFETs
with electron mobility values up to 0.85 cm2 V�1 s�1 [10]
have also been reported. It is possible to build complemen-
tary-like circuits by optimizing a process in which two dif-
ferent semiconductors are inkjet printed and processed on
the same substrate: one semiconductor for n-channel and
the other for p-channel devices.

Ambipolar OFETs with vacuum-deposited materials
have also been demonstrated by bilayers of electron- and
hole-transport materials [11–14] or by combining source/
drain contact or dielectric engineering with a single pris-
tine semiconductor material [15–17]. However, solution-
processed ambipolar OFETs fabricated from a single semi-
conductor layer with the same metal for both source and
drain electrodes, and operating as either p- or n-channel
devices depending on the applied voltage, offer the advan-
tage of simplicity.
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Fig. 1. (a) Chemical structure of NDI2-DTP, (b) device structure of a top-
gate OFET, (c) structure of a complementary-like inverter with two
ambipolar OFETs, (d) output characteristics of a representative OFET with
NDI2-DTP exhibiting an electron mobility of 1.1 cm2 V�1 s�1 and a hole
mobility of 0.01 cm2 V�1 s�1 in the saturation regime, and (e) schematic
of a complementary-like inverter, with T1 acting as a p-channel device
and T2 as an n-channel device.
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While there are many examples of solution-processed
high-performance p- and n-channel OFETs, there are fewer
reports on high-performance ambipolar OFETs. Ambipolar
properties were first demonstrated in the late 1990s
[11,18]; however, research on ambipolar OFETs intensified
from around 2003 [19–21]. In the same period, comple-
mentary-like circuits composed of ambipolar OFETs were
demonstrated using either single-component solution-pro-
cessed organic semiconductors or a blend of electron- and
hole-transport materials [22–26]. Meijer et al. demon-
strated solution-processed ambipolar OFETs and comple-
mentary-like circuits with a blend of electron- and hole-
transport materials and with single-component ambipolar
material showing very low electron and hole mobility val-
ues on the order of 10�5 cm2 V�1 s�1 [22]. Later, Anthopo-
ulos et al. reported organic complementary-like inverters
employing methanofullerene-based ambipolar field-effect
transistors with an electron mobility of 0.01 cm2 V�1 s�1

and a hole mobility of 0.008 cm2 V�1 s�1 [23]. Kim et al.
have demonstrated ambipolar transistors and complemen-
tary-like inverters using a bottom-gate, bottom-contact
structure on silicon with gold source/drain electrodes and
a new donor–acceptor copolymer semiconductor [24].
These transistors exhibited mobility values of up to
0.04 cm2 V�1 s�1 for electrons and 0.003 cm2 V�1 s�1 for
holes in the saturation regime and inverters achieved a sta-
tic (DC) gain value of 30 V/V. Roelofs et al. have reported
ambipolar OFETs with a bottom-gate and gold bottom-
contacts and a semiconductor of poly(diketopyrrolopyr-
role-terthiophene). The OFETs had electron and hole
mobility values of 0.02 cm2 V�1 s�1 and complementary-
like inverters had a gain of 20 V/V [27]. Recently, we re-
ported that solution-processed films of a molecule in
which two naphthalene diimide (NDI) units are bridged
by a dithienopyrrole (DTP), 2,20-(4-n-hexyl-4H-dithie-
no[3,2-b:20,30-d]pyrrole-2,6-diyl)bis(N,N0-bis(n-
hexyl)naphthalene-1,4:5,8-bis(dicarboximide) (NDI2-DTP,
Fig. 1), exhibits hole and electron mobility values of up to
0.0098 and 1.5 cm2 V�1 s�1, respectively, in a top-gate bot-
tom-contact field-effect transistor geometry [28].

Here, we demonstrate top-gate OFETs and inverters fab-
ricated using solution-processed NDI2-DTP and a CYTOP/
Al2O3 bilayer as a channel semiconductor and a gate dielec-
tric material, respectively. The use of the top-gate device
geometry with the bilayer gate dielectric allows compara-
tively low voltage operation with remarkable long-term
environmental and operational stability [29]. Complemen-
tary-like inverters composed of these ambipolar OFETs
showed hysteresis-free voltage transfer characteristics
and yielded very high DC gain values of more than 90 V/
V (up to 122 V/V).
2. Fabrication and electrical characterization

Top-gate OFETs were fabricated to study the ambipolar
performance of NDI2-DTP. The chemical structure of NDI2-
DTP is shown in Fig. 1a. Here, a CYTOP/Al2O3 bilayer was
used as a gate dielectric material. Fig. 1b shows the struc-
ture of the devices. Gold (50 nm) source and drain elec-
trodes were deposited by thermal evaporation through a
shadow mask onto Corning glass substrates (rough-
ness < 2 nm). Thin films of NDI2-DTP [28] were deposited
by spin-coating a 30 mg/mL solution in dichlorobenzene.
The thin films were then annealed at 100 �C for 15 min. CY-
TOP solution (CTL-809 M, 9 wt.%) was diluted with solvent
(CT-solv.180) to make a 2 wt.% solution which was spin-
coated at 3000 rpm for 60 s to form a 40 nm-thick CYTOP
layer. The CYTOP film was annealed at 100 �C for 20 min.
Al2O3 (50 nm) films were then deposited by atomic layer
deposition at 110 �C using a Savannah 100 system from
Cambridge Nanotech. Finally, Al (150 nm) gate electrodes
were deposited by thermal evaporation through a shadow
mask. All current–voltage (I�V) characteristics were mea-
sured in a N2-filled glove box (O2, H2O < 0.1 ppm).

The output (IDS vs. VDS) and transfer (IDS vs. VGS) charac-
teristics were measured using an Agilent E5272A source/
monitor unit. The mobility (l) and threshold voltage
(VTH) values were extracted from the highest slope of
|IDS|1/2 vs. VGS plots in the saturation regime of the transfer
characteristics. Average values of mobility and threshold
voltage were extracted from 4 to 6 devices fabricated with
two different channel widths (W) of 2550 and 6050 lm
and the same channel length (L) of 180 lm from a single
substrate. The capacitance density of the gate dielectric
was measured from parallel plate capacitors fabricated
using the same procedures as described above on indepen-
dent substrates with a geometry of glass/Au/CYTOP
(40 nm)/Al2O3 (50 nm)/Al (measured at a frequency of
1 kHz) and areas ranging from 1 mm2 to 4 mm2. A capaci-
tance density of 34.5(±0.1) nF cm�2 was obtained from 4
different batches of samples.



Fig. 2. Output characteristics of OFET T1 (a), and T2 (b), constituting a
complementary-like inverter. (c) The resistance plot for both transistors,
T1 during p-channel operation and T2 during n-channel operation,
providing an estimation of the switching point.
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Complementary-like inverter circuits were fabricated
using two ambipolar transistors with a channel length of
180 lm and different channel widths of 6050 and
2550 lm, respectively, as shown in Fig. 1c. A common gate
electrode, which works as the input (VIN) of the inverter
circuit, was thermally deposited for both OFETs through a
shadow mask. Since the mobility for p-channel operation
for OFETs with NDI2-DTP is lower than for n-channel oper-
ation, the transistor with larger width (6050 lm) was cho-
sen for p-channel operation.

3. Device and inverter results

The output characteristics of a representative OFET with
NDI2-DTP are shown in Fig. 1d. This device exhibits elec-
tron and hole mobility values of 1.1 and 0.012 cm2 V�1 s�1

and a VTH of +13.7 and �13.0 V during n- and p-channel
operation, respectively.

Device batches 1 and 2 were fabricated using NDI2-DTP
from the same synthetic batch, whereas device batch 3
used NDI2-DTP prepared and purified independently. Ta-
ble 1 summarizes the results obtained from the various
batches. As shown in Table 1, batch-to-batch variations in
the electrical properties of the devices are observed,
showing average electron-mobility values varying from
0.8(±0.2) to 1.2(±0.3) cm2 V�1 s�1 and average hole-mobil-
ity values varying from 0.007(±0.003) to 0.009(±0.004)
cm2 V�1 s�1.

Fig. 1e shows the schematic of a complementary-like
inverter realized with two ambipolar OFETs, T1 and T2.
In complementary-like operation, T1 (W = 6050 lm) acts
as the p-channel device and T2 (W = 2550 lm) acts as the
n-channel device. Here, VIN is varied from 0 to 25 V, and
VDD and VSS are fixed at 25 and 0 V, respectively. The output
characteristics of both T1 and T2 are shown in Fig. 2a and
b. A hole mobility value of 0.007 cm2 V�1 s�1 with a thresh-
old voltage value of �12.6 V and an electron mobility value
of 0.86 cm2 V�1 s�1 with a threshold voltage value of 13.5 V
were obtained from T1 and T2, respectively. The static per-
formance of an inverter is evaluated by the DC gain values
obtained from the measured voltage transfer characteris-
tics. The operation of a complementary inverter can be ex-
plained by two series-connected, voltage-dependent
variable resistors. In general, for a given supply voltage,
VDD, the switching voltage (VM) corresponds to the VIN that
makes the resistance of the n-channel FET (Rn = VDS/IDS)
equal to the resistance of the p-channel FET (Rp = �VDS/
�IDS). Accordingly, a device resistance plot can be used to
analyze the switching voltage of complementary-like
inverters [30]. This method is suitable for estimating the
Table 1
Summary of results for top-gate bottom-contact OFETs with NDI2-DTP with L = 18

Batch Operation VDD (V) lmax (c

1 (6 Dev.) n-channel 25 1.1
p-channel �25 0.01

2 (6 Dev.) n-channel 25 1.5
p-channel �25 0.01

3 (4 Dev.) n-channel 25 0.8
p-channel �25 0.009
switching region in the voltage transfer characteristics in
inverters with ambipolar OFETs, because it does not re-
strict us to calculating the resistances in a predefined oper-
ating regime, as is done in the extraction of the mobility
and threshold voltage values in ambipolar devices. More-
over, there is no proper definition of threshold voltage
for these devices throughout the operation.

The resistances during p- and n-channel operations can
be obtained when gate and drain terminals are connected,
or they can be extracted from the output characteristics of
0 lm and W = 2550 or 6050 lm.

m2 V�1 s�1) lave (cm2 V�1 s�1) VTH (V)

0.8(±0.2) +12.7(±0.6)
0.009(±0.004) �12.7(±0.4)
1.2(±0.3) +13.0(±0.9)
0.007(±0.003) �14.2(±0.7)
0.7(±0.1) +14.8(±0.8)
0.007(±0.001) �12.4(±0.7)
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the independent OFETs at the condition of VGS = VDS [30].
Using the same technique, the plot of the resistances of de-
vices T1 (Rp) and T2 (Rn) are obtained. The subscript in the
resistances (Rp, Rn) indicates the operation of the particular
transistor in the complementary-like inverter; T1 is work-
ing as p-channel and T2 as n-channel in this case. Fig. 2c
shows the values of Rp and Rn extracted from output char-
acteristics for different values of VGS = VDS. This plot sug-
gests the switching should occur near a VIN of 7 V. Fig. 3a
and b shows the voltage-transfer characteristics and DC
gain of a representative complementary-like inverter fabri-
cated with ambipolar OFETs T1 and T2. As we can see in
the voltage-transfer characteristics, a complementary-like
inverter shows a DC output swing range of about 20 V
when VIN is varied from 0 to 25 V at a supply voltage
(VDD) of 25 V. The DC gain is obtained by differentiating
VOUT with respect to VIN. High DC gain values of 122.8 V/V
and 94.5 V/V were obtained for this inverter in the forward
scan (VIN varied from 0 to 25 V) and in the reverse scan (VIN

varied from 25 to 0 V), respectively. No hysteresis was ob-
served between forward and reverse scans. The other
inverters fabricated in the same process exhibited high
gain values exceeding 90 V/V. To the best of our knowl-
edge, these numbers are higher than the values from any
other inverters based on ambipolar OFETs reported in the
literature.
4. Summary and conclusions

The electrical performance of NDI2-DTP OFETs with a CY-
TOP/Al2O3 bi-layer gate dielectric was measured. Top-gate
OFETs with a solution-processed molecular bis(naphthalene
Fig. 3. (a) Hysteresis voltage transfer characteristics and (b) DC gains of a
complementary-like inverter.
diimide)-dithienopyrrole (NDI2-DTP) derivative showed
ambipolar transistor properties with an average electron
mobility value of 1.2 cm2 V�1 s�1 and an average hole mobil-
ity value of 0.01 cm2 V�1 s�1, respectively. Complementary-
like inverters comprised of top-gate ambipolar OFETs
yielded very high DC gain values of more than 90 V/V (up
to 122 V/V) at a supply voltage of 25 V.
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